

China Real Estate Industry
Carbon Neutral Development Summit

中国房地产业碳达峰发展高峰论坛

让建筑的未来植根于森林

FII CHINA 林创中国 苏钰

深耕中国市场 见证行业发展

政策和政府合作

- 2015年, 《关于现代木 结构建筑技术合作谅解 备忘录》
- 在雄安新区、长江三角 区、成渝经济带等重要 区域开展合作

标准和规范

- 参与所有与木结构 相关国家标准的编 制修订
- 围绕标准规范的国际交流合作

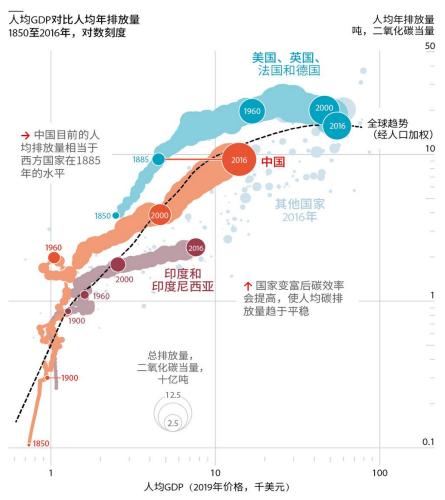
市场推广

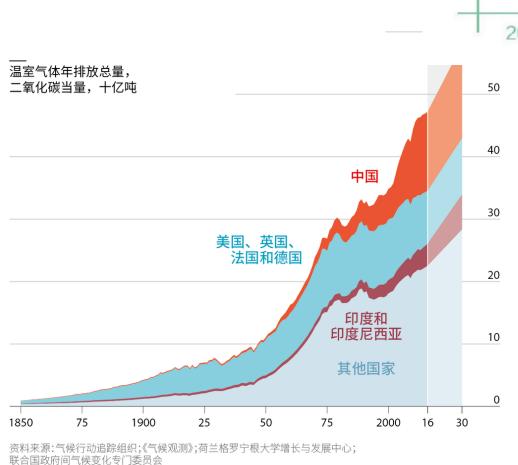
- 参加各类大型展会
- 举办各类研讨会
- 编制各类市场宣传材料
- 有影响力的微信平台

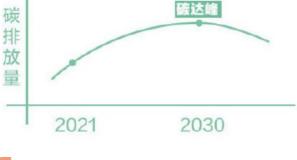
教育培训

- 大学培训
- 技术学校培训
- 企业培训
- 网上学习平台

示范项目


- 轻木
- 重木
- 平改坡
- 混合
- 景观





碳效率表现出色 但碳中和任务严峻

- 中国人均排放量相 当于西方国家1885 年的水平;
- 中国经济发展势头 强劲,实现碳达峰 充满挑战。

如何实现碳中和

温室气体排放与回收相互抵消

碳排放

能源结构重塑

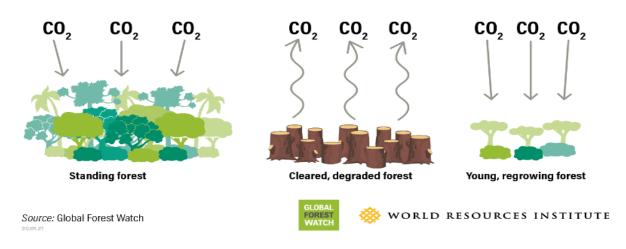
碳中和

CCUS + 生物碳汇

森林是陆地生态系统中最大的碳库

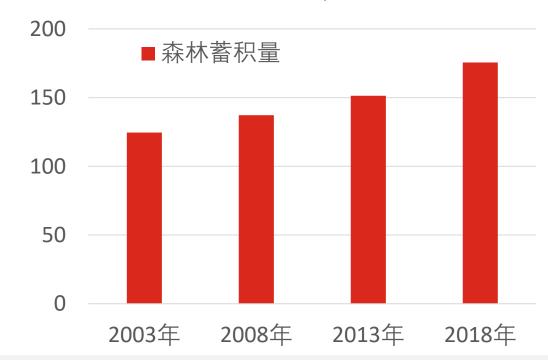
森林面积虽然只占陆地总面积的1/3,但森林植被区的碳储量几乎占到了陆地碳库总量的一半

树木通过光合作用变废为宝, 吸收大气中的二氧化碳并释放氧气



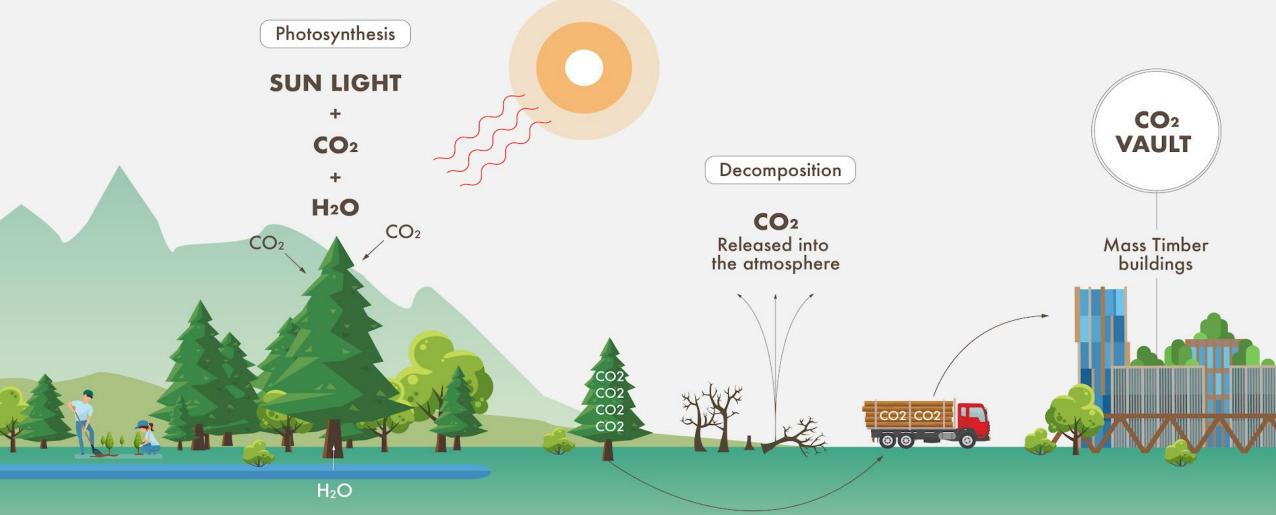
森林的固碳能力受时间和空间的制约

1.森林固碳的前提是树木处在健康状态下

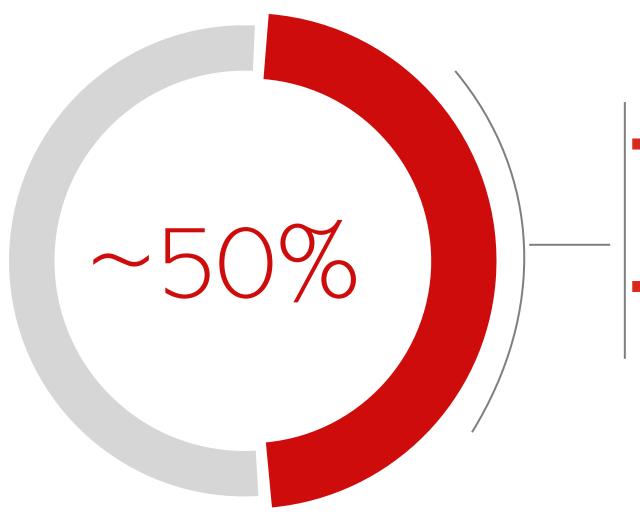

随着树木老化、腐烂,这些碳又被释放出来,成为碳源

Forests Act As Both a Source and Sink For Carbon

2.固碳总量可预计


每年新增蓄积量约为3亿立方米,新增固碳量3-4.5亿吨。

木结构建筑是森林碳固存作用的延展

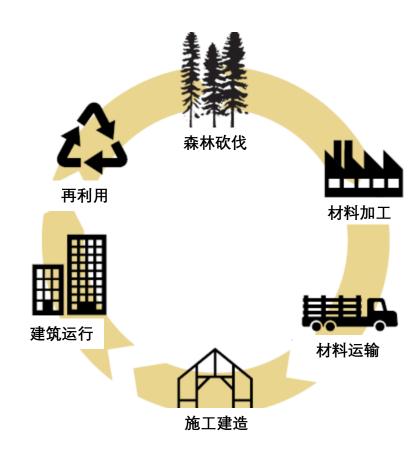

木材在使用期内可以继续固碳,建筑结构是对木材的长周期利用,显著延长了碳循环

将木材应用于建筑结构,把固碳的战场从森林拓展到城市

从减少碳排放的角度

- 世界范围来看,加上建筑运行期间的碳排,建材生产和建筑建造带来的碳排放 占全球总碳排放量的50%
- 在中国,建材生产、建筑建造和运行带来的二氧化碳排放量约占当年全国排放量的49.3%

数据来源:


《重塑能源:中国》

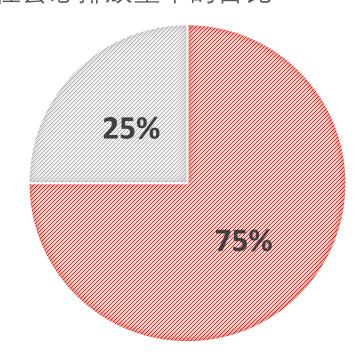
《中国建筑能耗研究报告2020》中国建筑节能协会能耗专委会

建筑全寿命期的划分

建筑全寿命期的阶段划分(ISO 21930:2017)															
建材生产阶 段			建造阶段		运行阶段							拆除回收阶段			
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4
原材料供应	原材料运输至工厂	建材加工	建材运输至建筑施工地	建筑建造和安装	建筑使用	建筑维护	建筑维修	建材更替	建筑翻新	运行阶段能源消耗	运行阶段水源消耗	建筑拆除	废材运输	废物处理	废物处置

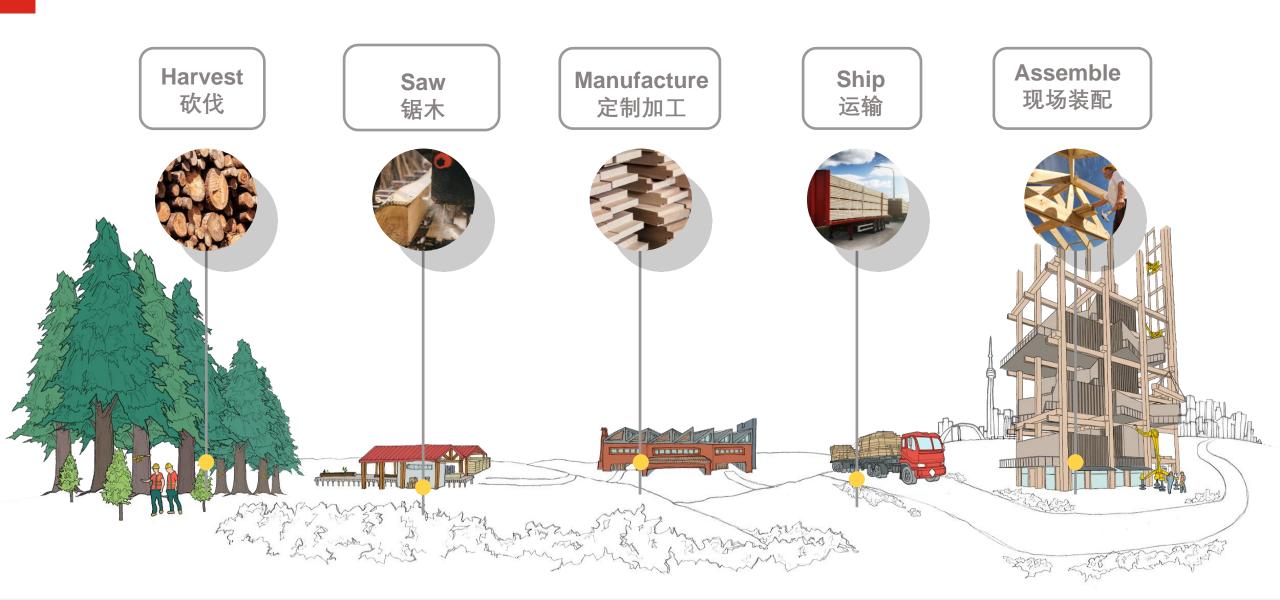
建材生产环节

石灰石开采



烧结、磨粉

铁矿石开采


冶炼、轧钢

ℤ 混凝土和钢材的生产碳排放在中国 社会总排放量中的占比

木质结构建材生产是一个负碳过程

生产环节碳排放比较

经营能耗

生产能耗

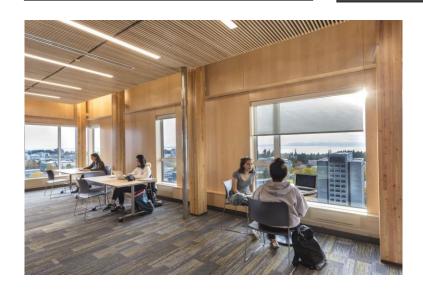
生产过程

2019年上半年,中国建筑科学研究院环境能源研究院依托国家标准《建筑碳排放计算标准》GB/T51366-2019,对七栋现代木结构建筑的全生命周期碳排放量进行计算。结果显示,**在建筑全生命周期内,由于木材的使用,减少了传统建材的使用量,与仅使用钢筋和混凝土的基准建筑相比,木结构建筑可减少8**. 6%-13. 7%的二氧化碳排放。

项目	骊山下 的院子		北川红枫 敬老院	中加生态 示范区	幸福谷 度假村	西郊宾馆 意境园	上谷水郡会 所	
建材生产阶段 碳排放节省率	61.20%	51.00%	48.90%	94.70%	77.60%	53.30%	64.70%	
全寿命期 碳排放节省率	10.3%	11.0%	8.6%	12.9%	11.8%	8.9%	13.7%	

建造过程的比较

- 1.90%的工厂预制,现场装配;
- 2. 施工快速高效;
- 3. 自重轻、减少地基部分现场作业;
- 4. 易于吊装;
- 5. 无现场浇筑、焊接等环节;
- 6. 干作业,扬尘少,对环境影响小;
- 7. 易于运输。

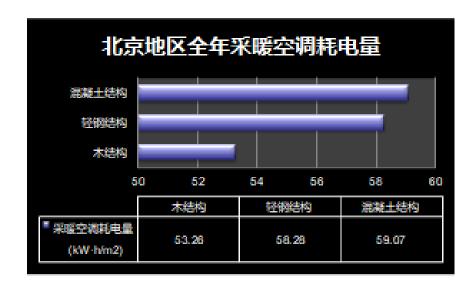


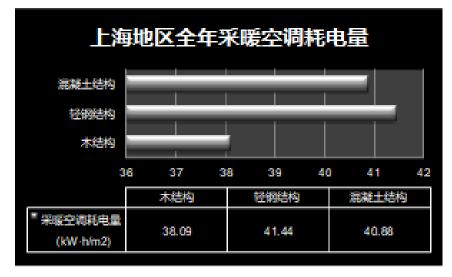
建筑运行阶段的能耗及排放

Wood vs Steel 木材热阻值是钢材的

400倍

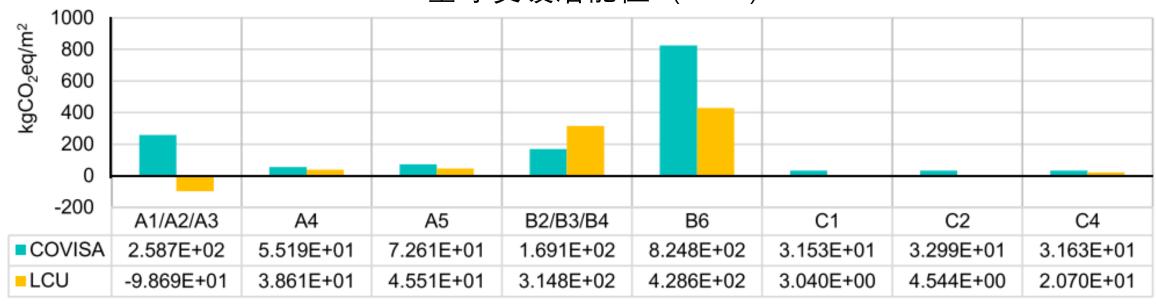
Wood vs Concrete 木材热阻值是混凝土的 10合




更好的保温效果 Economical insulation

更小的热桥效应 Less heat bridge

更低的能耗 Energy efficiency



木结构和混凝土-砖混合结构住宅碳排放对比

全球变暖潜能值 (GWP)

注: COVISA= 混凝土-砖混合结构住宅 LCU=木结构住宅

- 建筑运行阶段(B2-B6)的碳排放量最高,其中能源消耗B6是主要碳排放来源,木结构建筑的能源消耗量低于混凝土结构,木结构运行过程的维护维修碳排放大于混凝土-砖混结构(B2-B4);
- 建材生产阶段(A1-A3)碳排放次之,其中木材固碳作用影响下,木结构建筑的建材生产阶段可 达到负碳排放。

重复使用和循环利用

木结构建筑使用寿命结束,拆除的部品部件可进行再利用于建筑、家具、运输托盘等以及制造业中,进一步延长碳循环。

全寿命期各环节低碳低能耗

木材始于开采、运输、加工、建造、终于拆除、再利用,在建筑全寿命期的各个环节都具有显著环境效益。

木材自重轻可减少基础部分钢筋 混凝土材料的使用

Reduce

木材自重轻可减少运输、安装和拆除等各环节的能耗和排放

Reduce

木结构易于重新使用和循环利用

Reuse/ Recycle

现代木结构的应用前景

轻木结构

• 因地制宜,轻木结构可应用于文旅康养设施,及县城和乡村建设中

重木结构

- 高密度木结构通过重型预制构件突破体量和高度的限制
- 工业化部品部件保证了耐久 性和安全性,从而延长建筑 使用寿命,同时也延长碳循 环周期

世界各国展开高层木结构建筑竞赛

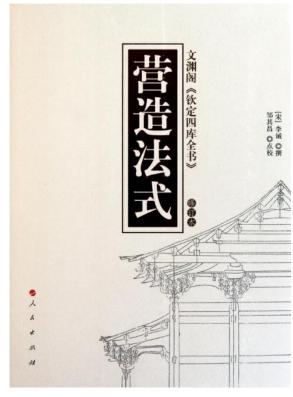
Brock Commons 学生 公寓 54米 加拿大温哥华 2017

HoHo 大楼 84米 奥地利 2019

MjøsaTower 85.4米 挪威 2019

地球塔 约120米 加拿大 在建

木结构建筑体量和高度的进步带动了更广阔的应用空间



中国木结构建筑的传统与复兴

应县木塔 67.3m, 1056年

■ 我国传统木结构兴于秦汉,盛于唐宋,至明清已至巅峰

宋代的《营造法式》 是最完整的木建筑技术著作

北京故宫一世界最大木结构建筑群

现代木结构在中国的发展

绿色建筑的重要实现形式

住建部颁发的2020年国家绿色建筑创新奖中两项木结构作品

山东鼎驰研发中心

共六层,高度层数实现突破。单层建筑面积893平方米;

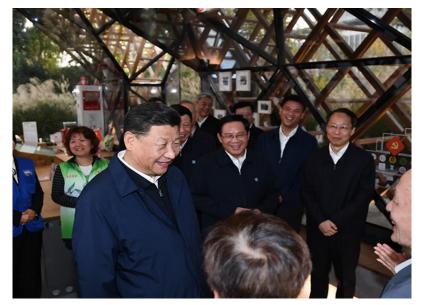
- 采用胶合梁、胶合柱、CLT等部品部件,装配率高达75%;
- 建造过程采用BIM技术,智能选取构件,通过模型完成碰撞检查。

成都天府国际会议中心前厅

云南弥勒太平湖木屋酒店及国际会议中心

• 国际会议中心建筑面积8000平米,由主厅和两个偏厅组成,全部采用木结构完成。

• 主厅跨度16米,高18米。采用红雪松、黄柏、欧洲落叶松、花旗松等结构材料。


开发商:云南吉成控股

设计方: 上海交大

施工方: 神州北极

上海滨江驿站

南京江北新区人才公寓



• 12号楼社区服务中心总面积2376平方米,采用装配式木结构,以加拿大花旗松为主材,是江苏省第一栋木结构的零碳建筑。

谢谢!